配置文件默认会在:/etc/clickhouse-server/下,需要三个配置文件,单节点,集群的全部提供!
config.xml

<clickhouse>
    <logger>
        <!-- 日志级别设置,建议设置成warning级别,日志文件路径,可自行修改
          - none (turns off logging)
          - fatal
          - critical
          - error
          - warning
          - notice
          - information
          - debug
          - trace
          - test (not for production usage)
        -->
        <level>trace</level>
        <log>/var/log/clickhouse-server/clickhouse-server.log</log>
        <errorlog>/var/log/clickhouse-server/clickhouse-server.err.log</errorlog>
        <size>1024M</size>
        <count>3</count>
    </logger>
 
    <http_port>8123</http_port>
    <tcp_port>9000</tcp_port>
    <!-- interserver_http_port 用于在ClickHouse服务器之间交换数据的端口。 -->
    <interserver_http_port>9009</interserver_http_port>
    <!-- interserver_http_host 一般配置本机IP,也可以配置域名,其他服务器可用于访问此服务器的主机名。 -->
    <interserver_http_host>10.0.1.1</interserver_http_host>
    <listen_host>0.0.0.0</listen_host>
    <!-- 最大连接数 -->
    <max_connections>4096</max_connections>
    <!-- ClickHouse在关闭连接之前等待传入请求的秒数 -->
    <keep_alive_timeout>3</keep_alive_timeout>
 
    <!-- 最大并发查询数 -->
    <max_concurrent_queries>100</max_concurrent_queries>
 
    <!-- 服务器进程的最大内存使用,会一直为查询保留占用,当查询超过此配置会引发异常。建议配置为0,即ck默认配置 -->
    <max_server_memory_usage>0</max_server_memory_usage>
 
    <!-- 全局线程池中的最大线程数,适合大量数据,如果服务器性能较好,可适当调整此配置,有助于提高并发查询 -->
    <max_thread_pool_size>10000</max_thread_pool_size>
 
    <!-- 最大内存使用率配置,一般配置0.8或者0.9,太多可能引起CPU打满-->
    <max_server_memory_usage_to_ram_ratio>0.9</max_server_memory_usage_to_ram_ratio>
 
    <!-- 按照官方解释类似于java进程oom的时候产生的temp文件,具体没关注过,可配置为0,表示禁用 -->
    <total_memory_profiler_step>4194304</total_memory_profiler_step>
 
    <!-- 收集随机分配和回收,并将它们写入系统。概率是每次分配/自由的,而不管分配的大小。 -->
    <total_memory_tracker_sample_probability>0</total_memory_tracker_sample_probability>
 
    <!-- 未压缩缓存仅对非常短的查询和极少数情况有利,对于日志等大量的查询场景来说建议配置为0-->
    <uncompressed_cache_size>0</uncompressed_cache_size>
 
    <!-- 同步数据时使用的缓存大小,这个配置太小的话表readonly会发生比较频繁,单位是B -->
    <mark_cache_size>5368709120</mark_cache_size>
 
    <!-- 数据存储路径 -->
    <path>/var/lib/clickhouse/</path>
 
    <!-- 多磁盘配置 -->
 
    <storage_configuration>
        <disks>
            <default>
                <!-- 最少需要保留多少磁盘空间 -->
                <keep_free_space_bytes>1024</keep_free_space_bytes>
            </default>
            <disk_1>
                <path>/var/lib/clickhouse/data1/</path>
                <keep_free_space_bytes>1024</keep_free_space_bytes>
            </disk_1>
            <!-- 以下配置可以做冷、热配置使用disk_2作为冷盘配置,ck自带的ttl可实现自动将数据转到冷盘上,数据量大的情况下修改ttl失败的概率会很高 -->
            <!-- <disk_2>
                <path>/var/lib/clickhouse/data2/</path>
                <keep_free_space_bytes>1024</keep_free_space_bytes>
            </disk_2> -->
            <!-- 以下配置可以做冷、热、温等配置使用 -->
            <!-- <s3>
                <type>s3</type>
                <endpoint>http://path/to/endpoint</endpoint>
                <access_key_id>your_access_key_id</access_key_id>
                <secret_access_key>your_secret_access_key</secret_access_key>
            </s3>
            <blob_storage_disk>
                <type>azure_blob_storage</type>
                <storage_account_url>http://account.blob.core.windows.net</storage_account_url>
                <container_name>container</container_name>
                <account_name>account</account_name>
                <account_key>pass123</account_key>
                <metadata_path>/var/lib/clickhouse/disks/blob_storage_disk/</metadata_path>
                <cache_enabled>true</cache_enabled>
                <cache_path>/var/lib/clickhouse/disks/blob_storage_disk/cache/</cache_path>
                <skip_access_check>false</skip_access_check>
            </blob_storage_disk> -->
        </disks>
        <!-- 存储策略,跟建表有关 -->
        <policies>
            <william>
                <volumes>
                    <hot>
                        <disk>disk_1</disk>
                    </hot>
                    <!--cold>
                        <disk>disk_2</disk>
                    </cold-->
                </volumes>
                <!-- 移动因子,当热盘空闲还剩多少的时候将数据转移到冷盘 -->
                <move_factor>0.2</move_factor>
            </william>
        </policies>
    </storage_configuration>
    <!-- 用户级别的配置 -->
    <users_config>users.xml</users_config>
    <!-- 处理查询的临时数据的路径 -->
    <tmp_path>/var/lib/clickhouse/tmp/</tmp_path>
    <!-- 默认配置文件 -->
    <default_profile>default</default_profile>
    <!-- 逗号分隔的自定义设置前缀列表,适用于有特殊建表规范的项目 -->
    <custom_settings_prefixes></custom_settings_prefixes>
    <!-- 默认数据库 -->
    <default_database>default</default_database>
 
    <mlock_executable>true</mlock_executable>
    <distributed_ddl>
        <!-- ZooKeeper中DDL查询队列的路径 -->
        <path>/clickhouse/task_queue/ddl</path>
    </distributed_ddl>
 
    <!-- 最大可损坏的部件数 -->
    <merge_tree>
        <max_suspicious_broken_parts>5</max_suspicious_broken_parts>
    </merge_tree>
 
    <!-- 保存建表的schemas -->
    <format_schema_path>/var/lib/clickhouse/format_schemas/</format_schema_path>
    <!-- 集群配置,副本配置 -->
    <include_from>/etc/clickhouse-server/metrika.xml</include_from>
 
    <!-- 同步表的配置 -->
    <macros incl="macros" optional="true" />
 
    <!-- 内置字典的重新加载间隔,以秒为单位 -->
    <builtin_dictionaries_reload_interval>3600</builtin_dictionaries_reload_interval>
 
    <!-- 最大会话超时时间,配置为0表示查询的时候不会中断 -->
    <max_session_timeout>3600</max_session_timeout>
 
    <!-- 默认会话超时时间 -->
    <default_session_timeout>60</default_session_timeout>
 
    <!-- 以下配置是一些日志记录配置 -->
 
    <!-- 暴露ck自身的指标,如果有监控需求可以打开
    <prometheus>
        <endpoint>/metrics</endpoint>
        <port>9363</port>
        <metrics>true</metrics>
        <events>true</events>
        <asynchronous_metrics>true</asynchronous_metrics>
        <status_info>true</status_info>
    </prometheus>
    -->
 
    <!-- 执行sql记录,可以理解成ck的审计日志,排查问题很有用 -->
    <query_log>
        <database>system</database>
        <table>query_log</table>
        <!-- 配置默认删除时间,否则会占用很大的存储空间,单位有WEEK、DAY
        如需要长期保留,也可以到时见后转存到其他磁盘上,eg:event_date + INTERVAL 2 WEEK TO DISK 'bbb' -->
        <ttl>event_date + INTERVAL 5 DAY DELETE</ttl>
        <partition_by>toYYYYMM(event_date)</partition_by>
        <!-- 数据刷新间隔 -->
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </query_log>
 
    <!-- 记录trace日志,即调用链路信息,日志量也很大,可参考query_log配置信息 
    <trace_log>
        <database>system</database>
        <table>trace_log</table>
        <partition_by>toYYYYMM(event_date)</partition_by>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </trace_log> -->
 
    <!-- 查询线程日志 
    <query_thread_log>
        <database>system</database>
        <table>query_thread_log</table>
        <partition_by>toYYYYMM(event_date)</partition_by>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </query_thread_log> -->
 
    <!-- 查询视图日志。 
    <query_views_log>
        <database>system</database>
        <table>query_views_log</table>
        <partition_by>toYYYYMM(event_date)</partition_by>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </query_views_log> -->
 
    <!-- part日志,会记录每一批数据part的合并、删除等
    <part_log>
        <database>system</database>
        <table>part_log</table>
        <partition_by>toYYYYMM(event_date)</partition_by>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
    </part_log> -->
 
    <!-- 记录指标日志
    <metric_log>
        <database>system</database>
        <table>metric_log</table>
        <flush_interval_milliseconds>7500</flush_interval_milliseconds>
        <collect_interval_milliseconds>1000</collect_interval_milliseconds>
    </metric_log> -->
 
    <!-- 外部字典的配置。-->
    <dictionaries_config>*_dictionary.xml</dictionaries_config>
 
    <!-- 自定义的可执行函数的配置 -->
    <user_defined_executable_functions_config>*_function.xml</user_defined_executable_functions_config>
</clickhouse>

metrika.xml

<clickhouse>
    <remote_servers>
        <!-- 分布式配置示例,即集群节点配置。集群有多个节点时直接拷贝此文件到所有集群中的节点即可 -->
        <test_shard_localhost>
            <shard>
                <!-- 写入数据时的分片权重-->
                <!-- <weight>1</weight> -->
                <replica>
                    <host>localhost</host>
                    <port>9000</port>
                </replica>
            </shard>
        </test_shard_localhost>
        <test_cluster_one_shard_three_replicas_localhost>
            <shard>
                <internal_replication>false</internal_replication>
                <replica>
                    <host>127.0.0.1</host>
                    <port>9000</port>
                </replica>
                <replica>
                    <host>127.0.0.2</host>
                    <port>9000</port>
                </replica>
                <replica>
                    <host>127.0.0.3</host>
                    <port>9000</port>
                </replica>
            </shard>
            <!--shard>
                <internal_replication>false</internal_replication>
                <replica>
                    <host>127.0.0.1</host>
                    <port>9000</port>
                </replica>
                <replica>
                    <host>127.0.0.2</host>
                    <port>9000</port>
                </replica>
                <replica>
                    <host>127.0.0.3</host>
                    <port>9000</port>
                </replica>
            </shard-->
        </test_cluster_one_shard_three_replicas_localhost>
        <test_cluster_two_shards_localhost>
             <shard>
                 <replica>
                     <host>localhost</host>
                     <port>9000</port>
                 </replica>
             </shard>
             <shard>
                 <replica>
                     <host>localhost</host>
                     <port>9000</port>
                 </replica>
             </shard>
        </test_cluster_two_shards_localhost>
        <test_cluster_two_shards>
            <shard>
                <replica>
                    <host>127.0.0.1</host>
                    <port>9000</port>
                </replica>
            </shard>
            <shard>
                <replica>
                    <host>127.0.0.2</host>
                    <port>9000</port>
                </replica>
            </shard>
        </test_cluster_two_shards>
        <test_cluster_two_shards_internal_replication>
            <shard>
                <internal_replication>true</internal_replication>
                <replica>
                    <host>127.0.0.1</host>
                    <port>9000</port>
                </replica>
            </shard>
            <shard>
                <internal_replication>true</internal_replication>
                <replica>
                    <host>127.0.0.2</host>
                    <port>9000</port>
                </replica>
            </shard>
        </test_cluster_two_shards_internal_replication>
        <test_shard_localhost_secure>
            <shard>
                <replica>
                    <host>localhost</host>
                    <port>9440</port>
                    <secure>1</secure>
                </replica>
            </shard>
        </test_shard_localhost_secure>
        <test_unavailable_shard>
            <shard>
                <replica>
                    <host>localhost</host>
                    <port>9000</port>
                </replica>
            </shard>
            <shard>
                <replica>
                    <host>localhost</host>
                    <port>1</port>
                </replica>
            </shard>
        </test_unavailable_shard>
    </remote_servers>
    <!-- 使用集群的时候需要配置zookeeper,用于副本数据同步 -->
    <!--
    <zookeeper>
        <node>
            <host>example1</host>
            <port>2181</port>
        </node>
        <node>
            <host>example2</host>
            <port>2181</port>
        </node>
        <node>
            <host>example3</host>
            <port>2181</port>
        </node>
    </zookeeper>
    -->
    <!-- 会压缩30-100%的数据,节省磁盘空间 -->
    <compression>
        <case>
            <!-- 最小的part -->
            <min_part_size>10000000000</min_part_size> 
            <!-- 整个表里最小的part -->       
            <min_part_size_ratio>0.01</min_part_size_ratio>   
            <!-- 压缩方式. -->
            <method>zstd</method>
        </case>
    </compression>
</clickhouse>